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Numerical calculations of the Landau constant are presented for the case of a 
shear layer of finite Reynolds number, having the velocity profile = tanh y. 
It is found that this parameter has a strong dependence on the Reynolds number 
for Re < 100. In  particular, the Landau constant is reduced by 43% from its 
inviscid value when Re = 40, the latter value being typical of many experiments. 
This percentage, however, is based upon a calculation in which the mean-flow 
distortion has been neglected. A rough estimate of the latter effect indicates 
that it could possibly increase the value of the Landau constant sufficiently 
that the net influence of a finite Reynolds number would be of a smaller 
magnitude . 

1. Introduction 
The weakly nonlinear stability theory for shear flows was formulated in 1960 

by Stuart and Watson, who showed that the temporal evolution of the per- 
turbation amplitude A ,  was governed by an equation of the form 

Ail  dA,/dt = a,, + a21A, 12 + O( /Alp).  (1.1) 

If one is in a frame of reference moving with the wave speed, then the quantity 
a,, can be identified with mi, the amplification factor of linearized theory; how- 
ever, it is a2, the ‘Landau constant’, that is of central interest in the nonlinear 
theory. The first quantitative calculation of a2 was made by Schade (1964) for 
the tanhy mixing-layer profile a t  a finite but very large Reynolds number. 
Schade obtained the result a2 = - 16/37r, thus establishing the existence of a 
supercritical equilibrium state for modes sufficiently close to the neutral wave- 
number a, = 1. 

Subsequently, Stuart (1967) computed inviscid equilibrium states to higher 
order by expanding the wavenumber about its neutral value. The methods used 
by Schade and Stuart at first glance seem to be equivalent; however, in the 
time-dependent approach it is necessary to use viscosity to treat singularities 
that arise, whereas this difficulty is not encountered if one computes only steady 
states as was done by Stuart. Some subtle differences occur in the equilibrium 
solutions as a result; for example, the vorticity distributions are not the same, 
as discussed in 5 4 of Stuart’s paper. 
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More recently, the time-dependent problem was considered on an inviscid 
basis by Benney & Maslowe (1975)) who dealt with the singularity by employing 
thenonlinear critical-layer concept. They obtained, insteadof ( 1 .  I) ,  asecond-order 
amplitude equation which also included spatial variations. By using a normal- 
mode approach and considering the behaviour of the resulting ordinary differential 
equation in the phase plane, one can conclude that the steady solutions, which 
correspond to those determined by Stuart, are stable centres. Of these three in- 
vestigations, the present workismost closelyrelated to that of Schade asits purpose 
is to investigate finite Reynolds number effects in a weakly nonlinear context. 

A number of experiments have been reported for flows that are well approxi- 
mated by the tanh y profile (see, for example, Miksad (1972) and references cited 
therein). Of course, one would like to compare the experimental results with 
those of the finite amplitude theory; however, such a comparison can provide 
only a qualitative indication of the accord between the two, because the theory 
is valid only for wavenumbers sufficiently close to the neutral curve. In  fact, 
Stuart (1967) estimated that his expansion converges only for 0.975 < a < 1-0,t 
whereas a,,, the fastest-growing wave of linearized theory, is equal to 0.445, as 
first computed by Michalke (1964). None the less, if one wishes to make such 
comparisons (as several authors have done), the conditions for doing so are more 
favourable at finite Re because both (an - aBfl and aci decrease with decreasing 
Re (see figure 1). Here a, denotes the neutral wavenumber. Further discussion 
of these matters is postponed until 0 8 in order that the results for a2 as a function 
of Re can first be presented. 

2. General theory 
To begin with, we outline the basic approach with the aid of figure 1, which 

shows the linear neutral-stability curve for the tanhy profile. Let us focus 
attention upon a linearly unstable mode having, for example, the values of a 
and Re that correspond to point B. The temporal evolution and subsequent 
equilibration of this mode are to be computed by perturbing away from the 
point A on the linear neutral curve that has the same Reynolds number as B. 
Note that a perturbation about some critical Re is not appropriate for this 
problem because the instability mechanism is inviscid. 

Proceeding now to the analysis, our starting point is the non-dimensional 
vorticity equation, which can be written as 

Vz$-t++yV2$-z-$zV2$-y = Re-lVZ(V2$),  (2.1) 
where Re = lJ, Llv,  v being the kinematic viscosity. We consider a parallel shear 
flow with velocity profile U(y) and superimpose upon the basic flow a small 
perturbation that propagates with phase speed c.  The method of multiple time 
scales will be employed, so that the time derivative in (2.1) is transformed 

-+-+a$- 
according to a a  a 

at at a 7 9  

t Note, however, that the convergence of this series can be somewhat improved by 
using Shank’s (1955) transformation. 
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FIGURE 1. Stability boundary and wavenumber of fastest-growing 
wave according to linear theory. 

where E is an amplitude parameter that can be set equal to c t  (i.e. even though 
the quantity ci does not exist in the nonlinear theory, it is useful to refer to the 
value of ci that linear theory would predict at  a point such as B in figure l),  and 
the amplitude of the wave evolves on the slow time scale r = ae2t. 

It is convenient to employ a co-ordinate system moving with the wave speed, 
so that a/at = 0 and we write 

where €’ = ax. The perturbation stream function$ is found to satisfy the equation 

(2.3) 

where V2 = a2a2/a02+a2/ay2. The solution of (2.3) is to be found by expanding 
$ as folIows: 

e2V2$, + (ii - c )  V2$@ - ii”$s + e(gU V2$, -go V2$U) = (aRe)-lV2(V2$), 

E$ N ~ { $ ~ ( r ,  y) eie + 4: e-io} + e2($,(r, y) e2i* + *} 
+ ~ ~ { $ ~ ~ ( 7 ,  y) eis + * +433(r, y) esis + *} +O(e4). (2.4) 

(2.5) 

In  addition, a is expanded about its neutral value in a series having the form 

a N a,+e2a2+ ... . 

A few words apropos of the expansion (2.5) would seem to be in order; the form 
of (2.5) can be deduced in advance by recognizing that viscosity simply exerts a 
slight damping effect on the inviscid instability of inflexion-point profiles. From 
Lin’s perturbation formula applied to the case ;il = tanhy (see, for example, 
Stuart 1967, p. 425) one obtains 

act 2: (214  (1 -a), (2.6) 

where a, = 1 in the inviscid limit, so we expect that aci N a,-a in general. 
Since aci is O(e2) in the present formulation, the expansion (2.5) follows. 

We now substitute (2.4) and (2.5) into (2.3) and separate out equal powers 
of E .  In  the O ( E )  problem, the variables are separated by setting 

$1(7, Y )  = 4 7 )  @l(Y), 
44-2 
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which leads to the Orr-Sommerfeld problem of linearized theory, viz. 

P O l  = (U - c )  (Wi - a: Q1) -U"@, + (i/an Re) (@? - 2 4  0; +a: Q1) = 0, (2.7) 

with the boundary conditions that and its derivatives vanish as y -+ & m. It 
is possible, however, to exploit the symmetry of the tanh y profile and thereby 
reduce the range of integration to the semi-infinite domain -a 6 y 6 0 .  This 
is further discussed in 0 3, which deals with the numerical methods employed. 

(U - c) (@; - 4 4  a2) -Ti"@., + (i/2an Re) (@p - 8ai  @; + 16& (D2) 

with homogeneous boundary conditions whose explicit form is given in 0 3. There 
is also a mean-flow distortion at  O(e2); however, this effect, which is less signi- 
ficant for free shear layers than for bounded flows, will be neglected for the 
moment because its proper computation would require that the basic flow 
itself be a solution of the Navier-Stokes equations, e.g. a non-parallel flow. 
This matter is discussed a t  greater length in 0 5 and a procedure for estimating 
the distortion effect is described in the appendix. 

It is at O(s3) that the slow time dependence first enters the analysis and the 
amplitude equation will be seen to emerge as a result. Writing $31 = A2A*@31(~) 
and considering all terms multiplied by eie leads to the equation 

At 0(8), we write q5z = AZ@',(y) and find that QZ satisfies 

= @:- 0: a:), (2.8) 

(2) dA 
A'A*9@3, = ix (@; - Q1) + 2a2 a,(& - C )  Q1 A - A2A*Q(y) + 0 - , 

where (2.9) 

C ( y )  = 2@;*(w; - 3 4  Q2) + q(0; - 3 4  a;) - (2Q2 @:* + @; W;*). 

A necessary and sufficient condition for the existence of a solution to (2.9) is 
that the right-hand side be orthogonal to the solution of the adjoint problem. 
The latter consists of solving the equation 

('ii - c) (x" - a; x) + 2U'x' + (i/a, Re) (xi" - 2ai 2'' + a: x) = 0 (2.10) 

subject to appropriate homogeneous boundary conditions that are stated in 6 3. 
Imposing the orthogonality condition leads to the following result: 

;"la dr -a ~ ( W i - a i ~ ~ ) d y + 2 a , a ~ A S ~  - m  ~ ( U - e ) @ , d y - A Z A * J a  - m  XGdy = 0.  

(2.11) 

Equation (2.11) is clearly equivalent to the Landau equation (1.1). Thus the 
numerical solution of (2.7)-(2.11) leads to the determination of the coefficients 
appearing in that equation. 

3. Numerical procedures 
The eigenvalue problem associated with the Orr-Sommerfeld equation (2.7) 

has been solved using a procedure very similar to that employed by Betchov & 
Szewczyk (1963), who computed curves of constant aci for 0 < Re 6 40. A 
fourth-order Runge-Kutta subroutine was used to  integrate (2.7) and double- 
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precision complex arithmetic was employed throughout the computations. By 
taking advantage of the symmetry noted earlier it was possible to obtain satis- 
factory results for Re as large as 200. 

The numerical integration was initiated a t  y = - 3 using the asymptotic 
behaviour 

(3.1) 

which is obtained by setting 7 i  = - 1 and U" = 0 in (2.7). By taking the real part 
of to be even and the imaginary part to be odd, the boundary conditions at  
y = 0 become 

Also, from the symmetry of the equations one concludes that c,= 0; hence the 
eigenvalue problem involves finding a suitable a when Re and ci are specified. 
Two linearly independent solutions are obtained by setting first A, = 0 and 
then A ,  = 0. These solutions can then be superimposed with A,  and A,  chosen 
such that all but one of conditions (3.2) are satisfied; the remaining condition 
will be satisfied only when the proper value of a has been selected. Results for 
the fastest-growing wave are indicated in figure 1 as well as the stability boun- 
dary. The normalization chosen was A,, = 2 so as to agree with the standard 
result @, = sech y in the inviscid limit. 

Finding the numerical solution of (2.8) which yields Q2 turns out, by contrast, 
to be a fairly difficult matter. The difficulty is of the same nature as that usually 
encountered in solving the Om-Sommerfeld equation for bounded flows at very 
large values of Re, i.e. the viscous solution (multiplied by A,  in (3.1)) grows much 
more rapidly than the inviscid solution. As a result, it becomes impossible to 
compute a linearly independent inviscid solution, because a small amount of the 
fast-growing viscous solution is introduced by truncation error a t  each step and, 
after several integration steps, completely dominates the results. This sort of 
problem seems to be particularly acute in the case of (2.8) because of its in- 
homogeneity and the unboundedness of the flow. 

The asymptotic behaviour as y-f - 00 of the general solution to (2.8) is given by 

@, = A ,  e a y  + A ,  exp {a!( 1 + iRe/a)*y} as y -+ - 00, 

@;,(o) = @??(O) = Qli(0) = aqi(0) = 0. (3.2) 

which, in principle, provides the boundary conditions to be imposed at y = - 3. 
Here the constants Ki denote that particular solution which would result from 
substituting the asymptotic form of @, into the right-hand side of (2.8). From 
the symmetry of @, and the knowledge that a particular solution of (2.8) will, 
by itself, satisfy the boundary conditions at  infinity, we can also impose at  
y = 0 the conditions 

@g,(o) = @ $ ( O )  = @2i(o) = @ii(0) = 0. (3.4) 

Referring back now to (3.3), it can be seen that B, = B, = 0 and one only 
needs to know K,, K ,  and K ,  to obtain the desired particular solution. However, 
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with the analytical result Qz = - 0.5 sech2 y when Re = co. 
FIGURE 2. Numerical solution for a t  various values of Re compared 

by substituting the asymptotic form of 01, as given by (3.1), into (2.8) it  would 
be erroneously concluded that K,  = K ,  = 0. To summarize these difficulties, a 
considerable effort would be required to obtain the exact values for the constants 
in the asymptotic form of the particular solution to (2.8). In  particular, a more 
accurate representation of the behaviour of @, as y-+-cc would be required 
than that provided by (3.1). The equation could still be solved using an initial- 
value (shooting) method; however, the homogeneous solutions would have to be 
first included and then subtracted out using an orthonormalization technique 
(see, for example, Davey 1973) because the viscous solut'ion multiplied by B3 
grows very rapidly. 

A considerably simpler alternative that has been employed in the present 
computations is to use a finite-difference method. The latter is much easier to 
program than the orthonormalization technique and seems to be free of the 
instability that one encounters with shooting methods. Indeed Thomas (1953), 
who was the first to solve the Orr-Sommerfeld equation numerically (for 
Poiseuille flow), recognized these advantages and discussed the matter in his 
paper. An additional advantage in the present case is that the results in the 
range of interest, i.e. IyI < 2, were observed to be quite insensitive to the 
boundary conditions imposed a t  y = - 3. Hence these can be set equal to zero 
without introducing any error of consequence. 

The actual procedure employed was to rewrite (2.8) as a coupled set of four 
real second-order ordinary differential equations. The second derivatives were 
then differenced according to 

where the step size h was taken to be 0.05. Rather than impose the boundary 
@"(Y,) = (@,+I - 2@?z + @,-,)/h2+ O ( W ,  (3.5) 



Stability of a viscous free shear layer 695 

Y 
FIGURE 3. Numerical solution of the adjoint Orr-Sommerfeld equation for Re = 150. 

conditions (3.4) in the form written, the computations were continued to 
y = 0.05 and the even and oddness properties of Q2 invoked. 

This procedure leads to the problem of solving a banded matrix, which was 
done using subroutine DGELB of the IBM SSP package. The method was 
found to be very fast, requiring only 9 or 10 s on an IBM 360 computer including 
a preliminary integration of (2.7) so that Ql(y) and its derivatives could be 
stored. Results for various values of Re are illustrated in figure 2; the solution 
in the inviscid limit was obtained by Schade (1964). 

Proceeding now to the adjoint equation (2.10), the integration was done by 
the Runge-Kutta method and, following Schade, the real part of x was chosen 
to be odd with the imaginary part even, so that 

(3.6) 
At y = - 3, x has the same behaviour as Ql, i.e. conditions (3.2) were used to 
initiate the integration. However, somewhat more care would seem to be 
required in solving the adjoint problem than in solving the Om-Sommerfeld 
equation because in the inviscid limit x, = cosechy, which is singular at y = 0. 
Moreover, xi oscillates as can be seen from the solution shown in figure 3; that 
behaviour can be verified by noting that, for Re 9 1, xi is given asymptotically 
by the Lommel function, L, in the notation of Benney (1961), and the oscillation 
can be seen in figure 1 of his paper. In  spite of these potential numerical diffi- 
culties, the Runge-Kutta procedure was found to be adequate as was verified 
by comparing some results with others obtained by the finite-difference method. 

x ( 0 )  = X;(o) = Xi(0) = XT(0) = 0. 

4. Results for the coefficients of the amplitude equation 

(2.11) were evaluated using Simpson's rule. Let us now define the integrals 
Having obtained by numerical means a,,, x and Q2, the integrals appearing in 

(4.1) 

m 

x(Q;-a:Ql)dy, -r, = j x(U-c)<D,dy 
- m  

m 

Il = - i  

and 
I3 = 1 XGdy. 

- m  



696 X. A. Maslowe 

Re 
20 
30 
40 
50 
75 

100 
125 
150 
co 

a,  
0.783 
0.841 
0.874 
0.895 
0.926 
0.943 
0.954 
0.961 
1.000 

2 4  &/I1 
- 0.564 
- 0.594 
- 04304 
-0.610 
-0.616 
- 0.626 
- 0.626 
- 0.626 
- 0.636 

% 
- 0.552 
- 0.786 
- 0.951 
- 1.105 
- 1.35 
- 1.504 
- 1.61 
- 1.685 
- 1.698 

TABLE 1. Computed values of parameters in the 
amplitude evolution equation. 

Because of the symmetry of their integrands, we conclude that 11, I, and 13, 
as defined in (4.1), are all real numbers. The non-zero portions of the integrals 
involve only the even part of the integrand, so that it is simply necessary 
to evaluate the integral from y = -a to y = 0 and then double the 
result. 

In  order to relate these integrals to more familiar quantities, we rewrite 
(2.11) in terms of the fast time scale and also use (2 .5 )  to obtain 

The first term in (4.2) can be interpreted as the value of aci in the linear theory 
that would be obtained by expanding that quantity in a Taylor series about a 
point (such as A in figure 1) on the neutral-stability curve, i.e. 

I a(ac,) zan-- - 4 - ( aa )R;  (4-3) 

When Re = co the term (4.3) has the value - 2/n- according to Lin's perturbation 
formula. Of primary interest, however, is the Landau constant, which is given by 

a2 = -an13/Il (4.4) 

when we make the identification A ,  = sA [cf. (1.1)]. The numerical results are 
presented in table 1. 

The value of 2012, 12/11 remains fairly constant, which is in accordance with the 
results shown in figure 2 of Betchov & Szewczyk, i.e. the spacing between 
curves of constant aci does not change much as Re varies. The Landau constant, 
on the other hand, is seen to vary markedly with Re for Re < 100. 

These results can easily be generalized to include wave trains because the 
extension simply involves the addition of a linear term multiplied by the group 
velocity w'(a) .  The amplitude evolution equation for nonlinear systems has the 
general form (see e.g. discussion by Benney & Maslowe 1975) 

BA/BT + w' aA/aX = a2 A2A* + O(s2),  (4.5) 
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where X = e2x is a slow space variable, T = e2t and w' is a pure imaginary 
number for the tanh y flow. In  the inviscid limit, (4.5) becomes 

16 
- --AZA*, aA 2ii3A -_- - -  

i i ~  a x  3n 

whereas for finite Re, w' = 2ia: 12/11 according to (4.3). 

5. Concluding remarks 
It was pointed out earlier that free-shear-layer experiments are usually 

conducted a t  relatively low Reynolds numbers, say 20 6 Re < 100. (Note that 
the Re whose values are reported by experimentalists is generally not the same 
as that used in stability calculations owing to differences in scaling conventions; 
the conversion can be accomplished roughly, according to the data of Freymuth 
(I  9661, if the experimental Re is divided by 4.) In  most experiments, it  is observed 
that initially the fastest-growing mode has the wavenumber and growth rate 
predicted by linearized theory. This wave then equilibrates a t  some finite 
amplitude; further downstream, subharmonic modes are destabilized, the most 
prominent of which has a frequency half that of the fundamental. The corre- 
sponding theory for this subharmonic resonance has been given by Kelly (1967). 
Eventually, three-dimensional effects become important and transition to 
turbulence occurs shortly thereafter. 

Ideally, a weakly nonlinear approach such as the present one could be used to 
describe the initial exponential growth and subsequent equilibration of the 
linearly most unstable wave. The resultant equilibrated state could then be used 
as input for a theory such as that due to Kelly describing the evolution of the 
subharmonics. (Not having such a periodie solution, Kelly instead used the 
linear eigenfunction for an unstable wave after observing that this corresponded 
reasonably well with some of the experimental data.) 

There are a number of reasons, however, why the present results ought not 
to be compared directly with experiment. First of all, in the experiments unstable 
modes grow in space rather than time, and second, the parallel-flow assumption 
becomes less accurate at lower Reynolds numbers. Most important, however, is 
the already mentioned fact that the fastest-growing wave of linear theory has 
an a that is too far from its neutral value for the amplitude equation to apply 
for very long; certainly the expansion becomes invalid long before equilibrium 
is reached. On the other hand, the Landau equation should describe well the 
initial departure from exponential growth and, owing to the reduction of a2 at 
finite Re, (4.2) should apply for a longer period of time than one would have 
anticipated from the inviscid result. 

The reduction of [a2\ vis-ci-vis the limit of infinite Re considered by Schade 
will be somewhat less than the figures in table 1 indicate because of the neglect 
of mean-flow distortion. As shown by Stuart [1960, equation (6.3)], this term 
will always make a negative contribution to a2. However, there is reason to 
believe that the distortion is less pronounced for free shear layers than for most 
other flows. Essentially, the velocity distortion is produced by the Reynolds 
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stresses, which are zero for a neutral mode at infinite Re (this is not usually true, 
for example, in the case of a wake). Whatever Reynolds stress is produced at  finite 
Re goes partly into distortion but primarily into increasing the rate of growth 
of the shear layer. Strong evidence that the distortion of a growing shear layer 
is not large during the early stages of transition is provided by the mean-flow 
measurements of Browand (1966, figure 5). These measurements show that, 
when the velocity profile is suitably non-dimensionalized, the distortion is 
particularly small near y = 0,  which is where most of the contribution to u2 
would take place. 

During the present investigation, some computations were also made for the 
mean velocity profile U ( y )  = erf (idyl) .  Although the linear eigensolution for 
this case is nearly identical to that of the tanh y profile, the function CD, has a 
smaller amplitude and the Landau constant is reduced accordingly. The reduc- 
tion in absolute value was of the order of 50 %. This sensitivity of the weakly 
nonlinear theory to the details of the velocity prose was quite unexpected. 

Finally, it  should be mentioned that an extension of this work to stably 
stratified mixing layers could prove to be highly worthwhile because the ampli- 
fication rates are smaller in that case. The results of a weakly nonlinear theory 
ought to be relevant throughout the important Richardson number range 
0.16-0-35. Some of the author's as yet unpublished calculations show in fact that 
subcritical instability can occur for a shear layer with a tanh y velocity profile 
and the density profile p = exp ( - /? tanh y). Moreover, it appears from the 
numerical computations of Patnaik, Sherman & Corcos (1976), who integrated 
the nonlinear Boussinesq equations, that subharmonic resonance occurs just as 
it does in the homogeneous case. Experiments with stratified shear flows have 
also been reported by, among others, Scotti & Corcos (1972) and Browand & 
Winant (1973); however, comparisons of their data with theory might prove to be 
difficult because of the spatial variations in mean-flow properties that occurred 
during the experiments. 

The author is pleased to acknowledge some very helpful suggestions of Prof. 
Alan Needleman and Prof. Steven Orszag of M.I.T. concerning the numerical 
aspects of this work and the programming assistance of Mr Richard Dubois 
of McGill University. This research was supported by the U.S. National Oceanic 
and Atmospheric Administration and the National Research Council of Canada. 

Appendix. An estimate of the distortion effect 
An interesting feature exhibited by the weakly nonlinear theory is that the 

Reynolds stress due to the self-interaction of the fundamental disturbance mode 
causes an O(s2) distortion of the mean velocity profile. The magnitude of the 
Landau constant is altered as a result. For a parallel shear flow, the mean 
velocity has the form (Stuart 1960) 

where U = tanh y in the present case. The quantity f satisfies the ordinary 
differential equation f" = ia, ~ ~ ( w ;  a; - q,;* all, 

U(Y, 71 = Z(Y) +E2AA*f(Y), (A 1) 

(A 2) 
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whose solution is given by 

f ( y )  = ia, Re (@; @: - @;* a1) dy. (A 3) 

f(@D'I-a",l)-f"@l. (A 4) 

Sr, 
With f + 0, the function G(y) defined below (3.9) contains the following additional 
terms: 

For a steady parallel shear flow one would expect from energy considerations 
that the flow would distort as indicated in figure 4 and, indeed, it can be deduced 
from (A3) that f ( y )  is an odd function for the tanhy shea2r layer. However, 
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numerical integration of this equation leads to the result shown in figure 5. 
Although this result seems qualitatively correct for I yI > 0.5, f does not return 
to zero at  y = 0 but has a nearly singular behaviour. An equally serious difficulty 
is that the integral in (A 3) behaves, according to the numerical results, as Re-09 
for large Re; hence f becomes unbounded instead of approaching zero as Re -too. 

These difficulties are related to the fact that the basic flow is not a solution 
of the Navier-Stokes equations a t  finite Reynolds number. The proper resolution 
would be to consider a growing shear layer; in that case, the governing partial 
differential equations are no longer separable. A much less ambitious approach 
is described here whose objective is at least to obtain some estimate of the 
magnitude of the terms appearing in (A 4) and of their contribution to u2. To 
that end we first consider a shear layer growing slowly in time such that 

Y = Y * / W ,  

where y* is dimensional, L is the length scale (now slowly growing) and U depends 
upon y ,  as before. The mean-flow equation becomes 

f “  + 2LL‘yf‘ = ia, Re (@: @: - W;* al). 
Equation (A 5) is an improvement over (A 2 )  because it admits solutions with 

f(0) = 0. One such solution is shown in figure 5, corresponding to U = erf (&d;y), 
in which case LL’ = inv. However, the difficulty a t  large Re remains; also, in 
this approach a, and Re vary with time, so that the ‘Landau constant’ is no 
longer constant. 

A parallel and, as it turns out, more interesting approach is to consider a shear 
layer growing in space. We note, first of all, that when the velocity difference 2U 
across the mixing layer is smaller than the mean velocity U, an approximate 
solution of the boundary-layer equations is 

U* - V, = Uerf ( d y * / Z L ) ,  (A 6) 

where L(x)  = (nvx/U,)*. From the continuity equation, the dimensionless 
vertical component of velocity is found to be 

v = ( - 2/n) L‘ exp ( - t r y2 ) , .  (A 7) 

The constant of integration has been chosen such that v(co) = v( -a) = 0. Note 
that the dividing streamline now has a negative slope, which agrees with the 
results of Ting (1959), and that his boundary condition u(o3) v(m) = u( - co) v( - 00) 

is satisfied by (A 7). 
With a non-zero vertical component of the mean velocity, the equation for f 

now becomes 

f” + (U/U,,) exp ( - &ny2)f’ = a, Re (Wi 0; - @;* Q1) (A 8) 

with boundary conditions f(00) = f( - co) = 0; significantly, f is no longer an 
odd function, which may partly explain the very asymmetric mean-flow dis- 
tortion observed in Browand’s experiments. Also, now satisfies the so-called 
‘modified Orr-Sommerfeld equation’, i.e. (3.7) contains the following additional 
term: 

i(an Be)-l( U/U,) exp ( - &n-yz) (@? - a: @;). 
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FIGURE 6. Distortion quantity for spatially growing shear layer; Re = 40. 

Solutions of (A8) have been obtained for various combinations of Re and 
U/Uo. A strong dependence upon the latter parameter was observed as is shown 
by the results plotted in figure 6. The value U/Uo = 0.67 corresponds to the 
experiments of Miksad, whereas in Browand's experiments U/Uo = 1. The 
distortion shown is very similar to the experimental data except that the 
maximum distortion in the experiments occurred at larger values of 191. This 
discrepancy is more than likely due to the incomplete consideration of the effects 
of non-parallel flow in the calculations. 

As for the Landau constant itself, it  is difficult to estimate the distortion effect 
because the use of the modified Orr-Sommerfeld equation did not completely 
resolve the tendency off to increase with Re. Under the circumstances, it  seems 
reasonable to impose the proper behaviour artificially by evaluating the Reynolds 
stress quantity in parentheses in (A 8) at some higher value of Re. It was found 
that using Re3 led to a plausible rate of decay at large Re, thus facilitating com- 
parison with the results of Schade (1964) and Stuart (1967), who imposed the 
condition of zero velocity distortion. 

It should be noted that this procedure requires the solution of the modified 
Om-Sommerfeld equation at very high values of Re. A program using the finite- 
difference method was written for that purpose and no difficulties were ex- 
perienced even for Re as large as 5000. At a nominal value of Re = 40 with 
U/Uo = 0.66, it  was found that a2 = - 1.35 as compared with the value - 0.951 
without distortion. This result suggests that the effect of distortion may not be 
negligible, although one can not say so definitely until a full analysis has been 
conducted for a growing shear layer. 

I n  summary, the present calculations show that, in order to make a serious 
quantitative comparison of the weakly nonlinear theory with shear-layer 
experiments a t  finite Re, it would be necessary to employ the true experimental 
velocity profile, and to take account of both spatial variations and distortion, 
the Landau constant being sensitive to all of these effects. 

The author is indebted to Professor R. E. Kelly for some most helpful dis- 
cussions concerning the material presented in this appendix. 
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